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Summary

Human speech is the result of the combined wotk®farynx, which produces the voice as
an air vibration, and the articulator organs susht@ngue, lips, velum, etc. that modify this
vibration signal to model the speech. The waydhasiculators act over the speech signal is of
high interest for speech processing and artifgjedech generation. Thus, the main task of this BSc
thesis will be the analysis of the relation betwdbka speech parameters and the articulators'

movements which generated that speech.

We focus on the tongue movement as the main &tauof the speech generation process.
Our study will be based on 2D ultrasound recordiogghe tongue from that we will extract the
contour movement while saying English sentencegalrallel, the audio signal corresponding to
that ultrasound will be processed to obtain itcgpéfeatures in order to find the relation betwee

both contour movements and audio signal.

The final idea is generating a functional modulachtreceives the ultrasound images from
a recorded sentence as input and process thestitgrénformation for our study. The information
extracted from these ultrasound images must bepred on a simple way and then compared with
the one extracted from the audio signal of theeser®, showing how they are related to find some

useful correlation between both domains.

The resulting module of the thesis will be testadddferent objective and subjective ways.
Applied to records made by the student or providgdthe thesis tutor, the objective tests will
include checking the right performance of the ggoimcessing the ultrasound and, as a subjective
test, applying some classifier to the contour imfation and checking the resulting estimated values
for some spectral coefficient of the audio.

This work will be accompanied by the correspondingumentation of all the processes and
so by the previous studies of the different tonggaeking methods and different spectral estimation

methods; besides, some review of papers aboutquevesearches on the topic.



Resumen

El discurso humano es el resultado del trabajo cwelo de la laringe, que produce la voz
como una vibracion del aire, y los 6rganos artidotas tales como lengua, labios, velo, etc. Los
cuales modifican esa vibracion modelando asi euds®. La manera en que actidan estos érganos
sobre la sefial de voz es de gran interés paraatterdas como el procesamiento de voz humana o
generacion de voz artificial. Por lo tanto, la pial tarea en esta tesis es el estudio de laidalac
entre las propiedades del habla humana y los menios de los érganos articulatorios que lo

generan.

Nos centramos concretamente en el movimiento ¢entgua como principal articulador en
el proceso de generacion del habla. El estudio a&sa ben grabaciones de ultrasonidos
bidimensionales las cuales recogen el movimientaaoletorno lateral de la lengua al pronunciar
frases, principalmente en inglés. En paralelo feakde audio generada se procesa para obtener sus
caracteristicas espectrales y finalmente se craaalacion entre sefial de voz y movimientos de la

lengua.

La idea final es crear un moédulo funcional quelbl@@omo entrada un bloque de imagenes
de ultrasonido grabadas de una frase y que prédgés®rmacion interesante para nuestro estudio.
La informacion extraida de los ultrasonidos delvgsesentada de forma intuitiva y comparada con
la informacién extraida del audio de la frase, maw&to cdmo se relacionan para asi encontrar

alguna relacion atil entre ambos dominios.

El mddulo resultante sera probado con métodos tudgey objetivos. Aplicandose a
grabaciones hechas por el estudiante o proporcsnpdr el tutor responsable del proyecto, las
pruebas objetivas consistiran en comprobar el ctarieincionamiento al procesar los ultrasonidos
mientras que como prueba subjetiva, se aplica@sificadores matematicos a la informacion del

contorno, comprobando los valores estimados regakale cierto coeficiente espectral del audio.

Todo el trabajo ira acompafiado de la documentatgbproceso llevado a cabo asi como de
estudios previos sobre métodos de reconocimientmalémiento de lengua y sobre métodos de

estimacion espectral.



1 Introduction

The topic of this thesis is articulatory-to-acoastinapping which studies how the
articulatory organs generate human speech. Assa ¥iew of the topic, we develop a brief

description of the speech generation process andléments involved on it.

The organs of speech are classified as supraglattdl subglottal. This separation is
delimited above and below the vocal folds, locatethe larynx, whose separation is called glottis.
The subglottal organs mainly belong to the respiyasystem and provide the air flow needed to
generate the speech signal while the supraglotiat ts in charge of modifying that air flow and
producing the phonemes contained on it. These tages of the speech production are called
phonation andmodulation respectively. Our interest will focus on the madidn phase which is

performed by supraglottal articulators.

The basic structure of the supraglottal tract imposed by the pharynx, and both nasal and
oral cavities, separated by the velum. The nasatyces used to generate so called 'nasal sounds'
while the rest of the phonemes are generated bgrdieavity movements as a result of the tongue,

teeth and lips work combined [1].

Is then the oral cavity on what we will focus, amdre concretely on tongue movements

since it is the main articulator organ into thersigottal tract.

1.1 Task definition

The labor to be made on this thesis consists atystg the relation between the articulators
and the speech signal. For this, both audio anclator movement signals will be needed in order
to find how they are related.

There are different parameters which need to beseahdefore addressing the study, i.e.
what articulator/s do we study, how to track itsithmovements, what features of audio signal we
want to analyze and how to obtain them, how to ggscaudio and articulator's information and
what models or schemes do we apply to find theticel between them.

1.2 Obijectives

Within this study we look for a list of objectived) related among them:



« Make a review of different articulatory-to-acoustmapping methods used in

previous studies about the topic.

» Compare different options to face up the topicrideo to choose the one which fits

best in our case.

* Obtain some relation between speech parametershancdorresponding articulator

movements.

* Apply models for estimating those speech signahmpaters from the articulator

information associated to them.

* Check the result with different recorded sentenmesuding a set of them recorded

by the own student.

1.3 Motivations

All this area of research leads to the target tfi@al speech generation (also known as
speech synthesis) based on non-acoustic informatidms idea has interest for every
communicative situation on which it is not possiblerecommendable to transmit audio signal.

Some of these practical applications are listef2@in

* Medical field, as aid for patients whose voice leen decreased or lost (e.g.

laryngectomized patients or deaf and dumb people).

» 'Silent phone' device for confidential or furtivenemunications. It also might be

useful for communications in silent places likedtnes or concerts.

* Non-voiced speech generation in noisy environmewitere there is no 'audio

contact' but visual contact between receptor aanstnitter.

In general, what we want is to allow verbal comneation without need to send sound

signal between two points, using instead articulatfmrmation.

1.4 Structure of the thesis

The paper of this thesis is structured as follaavgeneral introduction of the topic included
above, a deep explanation of the task to be dortbisnstudy fixing on it the main aspects to
consider, a preliminaries analysis on which we deedew of the previous papers of different

researches about the topic of articulator to acousapping, a central section about the description



of the work done in this study step by step andliyn the last section of results and critical

assessment on which we expose the obtained outcome.



2 Analysis of the task

After introducing the main topic of the thesis ohigh we want to work, on this section we

will define how we will approach the topic more coetely.

2.1 Articulators

First of all, this study is focused on phonetic miation of the speech. This function is
performed on supraglottal tract and into it, itthe oral cavity where most of the phonemes are

generated. The oral cavity contains tongue, tegtlum and palate as main articulator organs [1].

Concretely we will focus otongue movementssince it is the main modulator of speech.
The superior contour of the tongue will be trackdule the subject of the recording pronounces
different sentences. The result will be a profiteh® tongue from which we want to extract some

information about the speech signal generatedsoymdvements.

2.2 Data acquisition

On sectionPreliminaries analysisve will introduce a review of previous researched a
studies about the topic. Besides we will see dfieoptions to record articulator information and

pros and cons of each one.

For our current task we choo&® ultrasound based recognition Ultrasound system is
based on sounds with frequencies above the audibge (audible range: 20 Hz - 20 kHz). Sound
is mechanical energy that needs a medium to propagad thus the transducer acts as a
microphone in order to record the acoustic echaaweiated by the tissue along the path of the
emitted pulse. These echoes carry information atheuinternal tissues (the inside of the mouth in

this case) along the path it traveled [3].

In Figure 2.1 we can see the image resulting afl&atasound recording. What is shown on it
is one of the frames of the sentence. One singiesee will be composed by several frames like
this one in a row. The number of frames included @ach sentence will depend on how long it is.

As we can see, the picture shows a shadowed imageagscale where the tongue contour
is represented as a white line which moves up, dawhslightly sideways. It is a lateral contour of
the tongue so the tongue tip is represented aigheextreme of the contour while the tongue root
belongs to the left of the ultrasound.

10
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Figure 2.1. Example of a 2D ultrasound tongue imageom a sentence recorded at the Speech Productidmb of

Indiana University (1U)

2.3 Data processing

Once we have these 2D ultrasound images, some g3iageis needed to transform the

information into numeric values, which can be latealyzed by computer software.
This processing will be divided into two steps:

» Using EdgeTrak software [4] we take ultrasound images associatednte full

sentence and we obtain from it the coordinateb®tbntour's points on a text file.

» After this, variousPython code scripts will be used to extract those coa@teis.
From them we will generate simple images of thetmancombined with temporal
and spectral representations of the audio signegid®s this, contours coordinates

will be written on other text file with the formaeeded for the next phase of the

analysis.

These two processes will be explained more deeplthe main section of the document:

Design process.

2.4 Audio data study

Audio data acquisition is made at the moment ofulti@sound record in order to obtain it
synchronized with the ultrasound image. Acting they we can easily obtain the audio fragment

corresponding to each one of the ultrasound frames.

11



Once we have the audio signal, it is needed tkthbout what feature we will get out of it.
The audio features observable in time domain dependhe subglottal tract. For example, the
amplitude of the signal, which measures how lowa speech is, is related with how much air is
provided by the lungs while speaking. For its pamdamental frequency determines the tone of
the audio signal and it represent the fundamergabg of vocal folds vibration. It is up for each
individual's characteristics like gender, complexi@tc. Male voices are usually lower while

female's and children's tend to be higher [5].

The articulators' influence is shown then in fregmyedomain. All previous researches about
the topic work with the spectrum of the signal.our case we chooddel-Generalized Cepstrum

coefficients (MGC) as representation of the spectf6.

12



3 Preliminaries analysis

On this section we will introduce a review of pi@aws studies about articulatory-to-acoustic
mapping topic. First, we will develop a short ex@ton of the different acquisition techniques
used to extract both articulator and audio inforaraton each study. After that we go to the
evolution of articulatory-to-acoustic mapping thgbu different experiments, from Gaussian
Mixture Static Models (GMM) to Hidden-Markov ModgldMM) considering dynamic properties.

3.1 Data acquisition techniques

We take an extract from [7] in which all the diet options used on silent speech

recognition studies are listed along with the cgponding authors:

"Several studies addressed the problem of silesgd@precognition, i.e. the identification of
a sequence of words from silent articulation: @& $EMG, [9] for NAM, [10] for PEMA and [11]

for ultrasound."

Each one of these techniques involves some prexigind characteristics. Here we

introduce them more deeply.

3.1.1 Surface Electromyography (SEMG)

Electromyography consists of obtaining impulse gpegenerated on muscles while
moving. In this case the electromyography workshwiarious electrodes placed on the subject's
face which track the activity of different muschesdile speaking. On Figure 3.1 we can see an

example of a person with these electrodes placed on

Figure 3.1. Overview of electrode positioning andaptured facial muscles. Image extracted from [8]

13



Various disadvantages are mentioned in [8]: Fir&,impact of speaker dependencies, such
as speaking style, speaking rate, and pronunciafirat is more, the EMG signal is affected by
changes in electrode positioning and environtaleconditions (temperature and humidity).
These factors clearly favor the developmehtspeaker-dependent and often session-dependent

systems.

3.1.2 Non-Audible-Murmur recognition (NAM)

The idea here is collecting the sound vibrationiagia stethoscope placed over the skin of
the recording subject [9]. As its own name suggekis option is applied for murmur or silent

speech recognition which implies low sound vibnasio

3.1.3 Permanent Electromagnetic Articulography (PEMA)

In this case the movement of the articulators ballrecorded by several magnets placed on
key points such as tongue, lips or cheeks. Thegdgmwhich these magnets produce in a magnetic
field due to speaking movements carry the artioulatformation. Apart from the magnets some
sensors are needed to capture those magneticizasiatVe illustrate in Figure 3.2 an example of

this kind of recording.

Figure 3.2. Example of PEMA record system placed ia subject. Image extracted from [10]

As we can see on Figure 3.2, this alternativegsligiinvasive and might result annoying for
the subject. It could deal to variations on the whgrticulating and thus to alter the results.

3.1.4 Ultrasound transducer

In ultrasound recordings a transducer is placeadteyhe chin of the subject while talking.

This transducer sends ultrasound signals, typicaity 3-5MHz range, and collects the echo

14



produced by them when contact with internal saf$ues (in this case the tongue). This way we
obtain one grayscale image with the profile oftiregue represented on it as a white line moving as

we saw on Figure 2.1, into sectiData acquisition

In some studies which apply this technique it isaligo record video from the front of the
mouth simultaneous to ultrasound recording in otdebtain lips movement information. In Figure
3.3 we see an example of helmet for ultrasoundrdeegs used to prevent the transducer from
moving while contacting the chin. In the image also included the camera and the microphone to

record video and audio signals.

Opthalmologists’s
band
V

Cushioned

Micriphone r ¢ Juides

Ultrasound
transducer

Figure 3.3. Ultrasound recording helmet setup. Imag extracted from [13]

Ultrasound tracking is the option we choose foss tthesis while it results in a set of
ultrasound frames from which we can easily extthettongue contour information with a tacking

software as we will explain later in sectibangue contour tracking: EdgeTrak

3.2 Articulatory-to-acoustic mapping techniques

Here we make a review of the development of differmodels applied in previous
researches for mapping the articulator informairdga audio features. We will analyze four studies
in order of publication so to show how more comphegdels are applied and each one tries to

improve previous results.

The introduction of [13] presents their previouspmiag techniques as starting point. These
ones were based on two different stages: firsgergithe test sequence of visual features, a phonetic
target sequence was predicted. A visual-acoudttiga dictionary is applied to this phonetic targe
sequence with a selection algorithm. All the oldimudio segments are concatenated to generate

the final speech waveform.

15



Two disadvantages are mentioned for this process:

» The quality of the synthesis depends highly on ghenetic decoding since one

single mistake on it is critical for the resultiagdio speech.

* Audio and visual sequences are processed sepaaaieithus, dependency between

them is not taken into account.

After that, they introduce two static mapping tdgles based on joint modeling of
articulator and acoustic data: Gaussian Mixture 8lodGMM) and Hidden Markov Models
(HMM).

3.2.1 Gaussian Mixture Models (GMM)

Definedx; andy; as source and target vectors observed in a speodioentt (in this case
source is referred to visual stream and targeefisrmred to audio stream), the implementation is
based on the modeling of the joint probability dgnsf them. Thus, the estimation gfat timet
from the giverx;is calculated as a linear weighted combinatioMafomponents.

M
y,=F(x,)= > (Wx,+b )P, |x,)

Equation 3.1. Estimated target vector in GMM implenentation. Formula extracted from [13]

W, and ky, are the transformation matrix and the bias veofathe m™ component of the

model while P(g|x;) is the probability of the source vector to beldoghat component.

3.2.2 HMM-based mapping

In this case the sequence of target vectassobtained from the sequence of source vectors
X maximizing the probability of conditioned tox:

y = arg max {g:{y I x}} piylx)=p(yl A, q)P(A,q|x)
¥

Equation 3.2. HMM based mapped audio vector. Formu extracted from [13]

A expresses the set of parameters of the HMM motidevg is the state sequence of the
model. The equation on the right illustrates the stages involved on the process: first finding the

optimal state sequence for a given source sequamtehen inferring the target sequence from it.

16



That state sequence consists of the set of phonehiel best fits with the source vector. Since this
kind of mapping is achieved at phonetic level iadtef frame level, linguistic constraints can be
included like limited vocabulary or language modélsthe conclusion of [13] this constraints are

said to improve the quality of the mapping.

Apart from these two mapping techniques, this papgiains how the voiced/unvoiced
parameter and the pitch value for the voiced setgraee predicted.

A voiced segment is a sound produced as an unidnation of the vocal folds by normal
exhalation of air, while unvoiced segments corresipm sounds generated with constriction in the

way out of the air, for instance 's' or 'p' soufids

Artificial Neural Networks (ANN) are used for thetassification. An ANN is a networked
module which simulates the human neural systemrderoto solve a task. "Inspired by the
sophisticated functionality of human brains wheoadreds of billions of interconnected neurons
process information in parallel, (...) an artiflar@ural network consists of an input layer of roesr

(or nodes, units), one or two hidden layers of apsrand a final layer of output neurons" [14].

The research presented in [13] is followed by {2)which they try to improve the previous
mapping technique. On that previous technique #ugience of target vectoys(spectrum of the
speech vector) was predicted by two stages, fgsiating the phonetic state sequence from the
source vectors and then obtaining the target segueom that estimated phonemes.

This process is calleBaseline mapping technigqueand it implied that spectral trajectories,
y, were estimated directly from the phonetic decodsglience and it did not take into account the
observations of the articulator. Then the qualitynapping depended completely on the phonetic

decoding.

The new approach is to predict the spectral trajext from both phonetic and articulator
sequences instead of only phonetic informations Timproved technique is defined @sntinuous
HMM-based mapping and it allows considering local correlations betweeiculator and spectral

features modeling their joint probability densitynttion by a single Gaussian distribution.
y = arg max {p(}' I x.ﬂ..f})}

V

Equation 3.3. Continuous HMM-based mapping expresen. Formula extracted from [2]

17



As we can see, estimating HMM state is still thstfstep, but now the predicted spectrum
depends directly on the articulator sequence bgdite decoded phonetic sequence. This method

still allows to include linguistic restrictions fghonetics which leads to better mapping quality.

The next reviewed paper [7] keeps going on thearebeabout silent speech interface and
for this it offers two variations of the previousapping options. Both GMM and HMM based
mappings are tested considering dynamic featuresoofce and target vectors. These dynamic
features are considered simply by extending soantktarget vector with their first derivatives.
Derivative vector at time is calculated aay; = 0.5/+1 - 0.5/+.1 and then added as an additional

column of the data.

The result of applying this modification into GMMaged mapping is what is call&MM-
based mapping considering dynamic feature§GMM + dyn) and it was first defined in [15] for
voice conversion (VC) and later in [16] appliedcatticulatory-to-acoustic mapping.

—wTp'w) 'wTD'E

seq

M
j}f = X(anf + bﬂr) ' P(Cm le) .,ir

Equation 3.4. GMM based conventional mapping and awidering dynamic features. Formulas extracted from
[13] and [7]

As we can see on these expressions, conventiondyl Gilsed mapping estimates each
individual y; vector depending only on the correspondiagvector. On the other hand, when
dynamic features are considered, the resultingnasbn refers to the whole sequence of target

vectors.

The same idea is applied to HMM based mapping tgakerand again the result is a whole
target sequence obtained as function of the whetpience of source vectors and the whole
sequence of HMM model states.

18



Figure 3.4. Graphic of dependencies in HMM+dyn mapjng. Image extracted from [7]

On Figure 3.4y is the phonetic sequence obtained from the caoreipg articulator vector
Xt. On the figure of the left the resulting targettee depends only on the corresponding source
vector &;) and the corresponding phonetic sequenge ©n the right figure we see how eagland

gt vector affects eaci in this new approach.

As a result of the study, the paper indicates th@h approaches outperformed their
previous versions. However, the word accuracy ansription tests were 75% and 60% using
HMM+dyn model and GMM+dyn model respectively. Alttgh HMM+dyn results are better in
terms of spectral distortion, GMM+dyn is said tack better responses from listeners in perceptual
tests.

"Nevertheless (...) transcription tests showed tiwate of these techniques was yet able to

synthesize perfectly intelligible speech, in a egsitic manner." [7]

After this pessimistic perspective included in ttenclusion of [7], a parallel study gives
other view about the feasibility of the speech bgsizer from articulator data only one year later.
newer paper from that study is [17] and on it thregtterm goal is said to be also developing a SSI

(Silent Speech Interface).

For this process PEMA was used to extract artiouiaformation. Some drawbacks of this
technique are mentioned in the paper as "somealimits for detecting certain aspects of speech
articulation (e.g. the manner of articulation, wogcand the phones articulated at the back of the

mouth)".

19



Two different databases of speech were used: T#D{games of numbers from 0 to 9 and
'oh’ sound) and CV database (48 syllables compbgel? consonants and 4 vowels). Different
results of listening tests were reached from badtalthses, the better ones performed using
TIDigits. The reasons are said to be the contdkience on speech recognition using TIDigits (is
easier to recognize a sequence of numbers) agaoiated non-sense syllables using CV and the
higher complexity of CV design which includes muegiety of sound combinations.

Two conversion algorithms were also consideredy®dre MMSE (Minimum Mean Square
Error estimator) and MLE (Maximum Likelihood Estitog. MLE needs more computational load
and it takes into account the temporal dynamiagb@fspeech parameters. The conclusion about this
choice is that the differences between the resmfitdoth techniques do not worth the extra

complexity of MLE. Then, MMSE estimation is saidlde the simplest and best option.

As conclusion of [17], the text gives a good pectipe of the results: "We have
successfully demonstrated that the proposed teghnis| able to generate speech of sufficient
intelligibility and quality for some vocabularie3his is a big step in our long-term goal of
developing a discrete and reliable SSI that witintely allow laryngectomees to recover their

voice."
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4 Design process

Once all these different visions have been predeitités section will explain the research
made to find correlation between articulator andi@aulata, i.e. how we deal with articulatory-to-

acoustic mapping topic.

As explained in sectioAnalysis of the taskour approach focuses on tongue function and
how its movements modulate the corresponding asdjpal. We know that tongue belongs to
supraglottal tract and it only affects voice modola process. Since tongue does not interfere on

phonation, we will put our emphasis on spectraiuiess of the audio signal.

Following we define step by step all the differestages done in this work: recoding
articulator data, extracting the information we iterested in, processing that information to work

with it, analyze the resulting values and finatkgract conclusions from the results.

4.1 Data acquisition: Microphone and Ultrasound transdicer

From the list of data acquisition options listedd (SectiorData acquisitiontechniques)

we use ultrasound tracking for this research.

The result of recording one sentence by ultrasaeclgnique is a set of images similar to the
one showed in Figure 2.1. The tongue contour isesgmted as a white curved line in an also
curved grayscale image. The shape of the imageri®ed because the transducer sends ultrasound
rays upwards from the chin in a radial way. Whemxtracts the echo produced by these rays
touching internal tissues, the final shape is adiriike the wave front of the ultrasounds. The

interesting information to be extracted from thesages is the tongue contour movement.

4.1.1 Available synchronized speech and ultrasound data

BME-TMIT provided available speech and ultrasouatadhat was recorded in 2014 at the
Speech Production Laboratory of Indiana Univer@ity ULTRASOUND).

From the IU_ULTRASOUND dataset (info available:
http://smartlab.tmit.ome.hu/csapo/lU_ULTRASOUND/We were using speaker SML (adult male,
native speaker of American English). The full speetaterial was the first 27 sentences of the

CMU-ARCTIC database. In order to avoid buffer olsf of the ultrasound device, sentences were
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recorded in groups of three. Before and after gmohp, the nonsense word /tata/ was uttered for

alignment purposes.

The tongue movement was recorded using a PhilipQ-Ef ultrasound system with an
XMatrix 6-1 MHz transducer. The recordings were eaa a soundproof booth in the Speech
Production Laboratory at Indiana University. Sirankous speech signals were recorded with a
Shure professional microphone and a pre-amplifiee ultrasound system was placed outside the
soundproof booth in order to reduce backgroundenaisming from the device, and only the
ultrasound transducer with a long cable was inbtb&h. The speech signal was digitized at 48 kHz
with a National Instruments card. For the ultragbwgcordings, a helmet (Ultrasound Stabilisation
Headset, Articulate Instruments Ltd) was used wifiiadd the ultrasound transducer relative to the

skull of the subject. The subject was sitting arhair while uttering the speech material.

The ultrasound image frame rates were between 4fp<l8or all of the recordings. The
ultrasound data were saved in DICOM format with»&@D resolution and converted to JPG image
sequences using Image-J (http://imagej.nih.gov/ij).

In order to align ultrasound and audio data witbheather, the subject uttered the /tata/
nonsense word before and after each sentence dgrotipe speech recording the locations of the
stop burst for the four /t/ consonants were meakurethe ultrasound recording, the same location
was measured by finding the place where the tomigustarted moving from the neutral position.

The ultrasound images were synchronized to matladllio based on this.

In the later analyses, the sentences identifieth witmbers 005, 010, 017, 019, 022 were
used from speaker SML. I&rror! Reference source not found.we show the content of these
recorded sentences.

# SENTENCE
005 Will we ever forget it
010 I'm playing a single hand in what looks like a fgggame.
017 From that moment his friendship for Belize turndiédred and jealousy.
019 | followed the line of the proposed railroad, loogifor chances.
022 Hardly were our plans made public before we werelmggpowerful opposition.

Table 4.1. Sentences used on the study. They wertracted from the CMU-ARCTIC database and recordedat
the Speech Production Lab of Indiana University (IJ
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4.1.2 Recording session of ultrasound data

As explained in sectioAvailable synchronized speech and ultrasound ,datathis project
one set of 27 ultrasound recorded sentences with gachronized audio signal were provided by
BME TMIT at the beginning of it. The developmenttbé code for processing articulator data and
first tests were made using this database. Aftat, thtome sentences were also recorded by the
student, Eduardo Sanz Martin, in both Spanish (erothnguage) and English languages. The
sentences belong to 'The Grandfather passageRambbw passage’, two typical texts frequently
used in speech studies. Apart from this, some eoseswords which combined different vocal and
consonant sounds were included as well: "apapdatd'a "epepe", etc. (all these with Spanish

pronunciation)

Figure 4.1. Example of ultrasound recording sessionsing helmet to fix ultrasound transducer to the hin. Image
provided by the MTA-ELTE Lendiilet Lingual Articulat ion Research Group

Some specifications of the recording process ataldd in [18]: The tongue movement was
recorded using a SonoSpeech ultrasound systencfate Instruments Ltd.) with a 2-4 MHz / 64
element 20mm radius convex ultrasound transduc@® fs. During the recordings, the transducer
was fixed using an ultrasound stabilization hea¢adiculate Instruments Ltd.). The speech was
recorded with an Audio-Technica ATR 3350 omnidi@tél condenser microphone at a distance of
approximately 30cm from the lips. The ultrasound Hre audio signals were digitized using an M-
Audio — MTRACK PLUS audio interface at 22050 Hz gdimg frequency. The ultrasound and
speech recordings were synchronized applying #m@drsynchronization output of the equipment
with the Articulate Assistant Advanced software t{éulate Instruments Ltd.). After this, the

ultrasound frames were extracted as raw scan &teahd converted to JPG images.
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Figure 4.2. Example of the result of the recordedentences by the student for this same research.

Comparing Figure 2.1 and Figure 4.2 the differenEeesolution is clear. The images
obtained by our recording system were more fuzzijthaos, harder to process and to analyze.

4.2 Tongue contour tracking: EdgeTrak

Our ultrasound produces a set of images in .jpo&by one for each frame of the sentence
so the number of images depends on the framesepend rate of the ultrasound recording.
Nevertheless, this representation is not usefubtorinterest and some preprocessing is needed to

extract what we want. We will use for this purptise tool callededgeTrak.

EdgeTrakis a simple software used to track sequencedrafsound images. It receives a set
of images, which are supposed to belong to a cootis sequence, and outputs one file on .ts

format which contains the position on each framallopoints of the contour.

When the images are loaded, the user has to dblecarea of interest for the tool to
optimize it. Then the gradients of each image textue calculated by the tool to identify where the
most abrupt changes into the color are and plaare tine contour points when they move from one
frame to other. After this the user has to draw uadlg the contour on the first image. This contour
is composed by as many dots as the user wantsrexeditas drawnEdgeTrakcan start to track the
following next images of the sequence automaticitiyn the first one. The software draws each

frame's contour from the previous' one [19].
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Figure 4.3.EdgeTrak doted-line tracking sample.

Although EdgeTrakhas an automatic tracking function, some lossemgiithe contour
tracking are usual, mainly when the image seenhss®the clarity of the white line. This happens
either when the tongue goes too high and the oltrad signal does not reach it so easily or when
the transducer is moved from its optimal positiomiles speaking. Because of this, the user must
check the result after every sequence tracked,ingofor leaks and errors on the contour and
correcting them manually. After correcting one eratl the following frames from it have to be

tracked again because they were obtained from thegwne.

4.3 Data processing:Python 3

The output ofEdgeTrakfor each sentence is one file which contains tkdical and
horizontal position of each point from each contarganized by frames along with more

information about the tracking.
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Figure 4.4. Content of the output file fromEdgeTrak software

As shown in Figure 4.4, the .ts file contains sametadata about the tracking procedure
such as number of frames, maximums and minimunmaitber of points of each frame's contour.
After that, a vertical list of pairs of data coqpesds with the two coordinates of each point ihi t
contour. This coordinate list is divided by framfes, example, it is divided in groups of 50 paifs o

coordinates in case that the user drew contouitsabihumber points.

Once we have this file available, it is time togess it to extract those coordinates and then
work with them. We choos®ython 3 as programming language for this task which inetud

different phases explained below in more detaiteHee have the main script to process the .ts file:

def dataProcessing(*filename):

if len(filename)==0:

filename = input("Type the name or the ts file to read: ")
else:

filename=filename[Q]
R L L E LR READ CONTOUR-----=-=---=------------- #
matrixCoord = readCoord (filename)
(numFrames, numPoints) = np.shape(matrixCoord)
numFrames = int(numFrames/2)
fommmmm e OBTAIN MGC COEFFICIENTS------------------- #
MGC = np.zeros(numFrames)
pitch = np.zeros(numFrames)
(MGC, pitch, duration) = getMGC(filename, numFrames)
Fommmm e GENERATE IMAGES AND VIDEO------------------ #
contourImagesVideo(filename, matrixCoord, numFrames, duration)
audioImagesVideo(filename, numFrames, matrixCoord)
spectrumImagesVideo(filename, numFrames, matrixCoord, MGC)

$ommmm INTERPOLATE Y-AXIS VALUES------------ooom-- #
matrixData = interpolate(matrixCoord)

- R TEMPORAL DERIVATIVE-----------=---=mmu- #
matrixData = spatialDerivative(matrixData)

#---mm - GENERATE ARFF FILE FOR WEKA PROCESSING------------ #

createArff(matrixData, MGC)
#extendArff(matrixData, MGC)
return
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The scriptdataProcessing receives only the name of the .ts file we wantde and operates
different tasks over it. The user can choose whahese tasks are applied by commenting or not
the corresponding line of code. The name of tleeddn be provided passing it as a parameter, but if

it is not specified the script asks for it throufk standard input.

4.3.1 Read contour

The first labor to do is obtaining all the coordemfrom the file. This is done r¢adcoord
script, which receives the name of the .ts fileermgit, takes the meta data needed (number of
frames and number of points per contour) and redidéhe coordinates organizing them into a
variable type list callechatrixCoord. This list is composed by vectors: Oth and 1lstxaend y

coordinates of the 1st frame's contour, 2nd and8tang to the 2nd frame and so on.

MatrixCoord IS the only output of the script and after extragit, the main script calculates
number of frames and number of points per contam fthe length of the list (which tsmFrames)

and from the length of one vector of the list (WhisnumPoints).

4.3.2 Obtain MGC coefficients

This script is the one which works with audio detarder to extract spectral information
from it. We choose MGC coefficients as representatdf the spectral features and they are

calculated by the scrigetmac.

This script receives the name of the file (hamehefaudio file and .ts file have to be the
same for the correct function of the code) andniln@ber of frames of the sentence. With that data
it opens the audio signal and calculates its damativhich will be returned by the function. The
number of frames is used to obtain the coefficiemtsrder to extract one set of MGC coefficients

for each one of the frames of the sentence.

Finally, the output is composed by the sets of famehts calculated into a list of vectors
calledmgc_coeff, one list callegpitch containing the fundamental frequency of each frame the

duration of the audio useful for following synchiem tasks.

4.3.3 Generate images and video

As an extra function added to the script, we detitteinclude this three options which

produce three simple visual representations ofettteacted contours. The preferred option can be
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chosen again by uncomment only one of the threptsoon this section. These three scripts are

contourImagesVideo, audioImagesVideo andspectrumImagesVideo.

ContourImagesVideo produces a sequence of images of the sentena@suce (as many
images as frames the sentence has got). The dumtithe audio is needed here as an input to
create a video which has the same duration asuthe,aesulting in a real-time representation of

the tongue movement.

AudioImagesVideo generates a set of images composed by two graphtheXirst one the
contour of each frame is represented the same svaythe previous script while on the second one
we plot the segment of the audio signal correspantb each contour. We can see then the audio
signal produced by every single position of thegtemin the sentence.

This script offers an interesting tool to check googsible direct relation between tongue
and audio signals, but we do not expect the relatobe easy enough to notice it with the naked
eye. In this case the rate of frames per secotanisr than real time in order to make the video
clearer to watch in detail.

Finally, spectrumImagesvideo follows the same idea as the previous script. i ¢hse the
second graph contains the spectral representdtanwe are working with; this is the MGC
coefficients. Looking again for making the resudtvideo as easy to watch as possible, we consider
the option of excluding the first MGC coefficientl{ich contains the amplitude of the audio signal
on each frame). We do this because this valuenayal one order of magnitude above the rest of
the coefficients and if we represent them all thgethe scale of the y axis does not allow us to

difference the smaller values.

As we commented aboutidioImagesvideo, the relation tongue-MGC coefficients is not
supposed to be clearly perceptible, but this regmiagion could be useful in following studies or in

order to check some possible result found by deapalysis.
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Figure 4.5. Sample of one frame representation refof the scripts contourImagesvideo, audioImagesvideo and

spectrumImagesvideo respectively. Each one of these scripts producessalone video of the sequence of frames

included in one sentence.

As this representation of the data is very simpid graphic we do not expect to find

important relations only by watching these imaged @deos. Thus, more specialized analysis of

the data will be needed, so we will introduce tr@nfollowing sections.
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4.3.4 Interpolate Y-axis values

The coordinates of the points obtained fréidgeTrakare useful for representing the
contours as the previous scripts do. However, whenvant to analyze those positions some more

preprocessing is needed.

In EdgeTraktracking we draw a certain number of points on teatour and the tool
follows tongue movement automatically. While doihgs, each point moves both vertically and
horizontally which is disturbing for our interesedause it makes us lose the reference of the
position of each point. One way to solve this issueonsidering both coordinates of each point in

our analysis but that implies working with two peopes of each point, which is hard to manage.

Since we want to work with a single property whagscribes the position of each point, the
solution is fixing a set of values for the abscissas and then obtaining the corresponding
arguments for those values on each contour. Adtigyway we are sampling the profile of the

tongue and extracting the height of each samplis.iShmade by the scriphterpolate.

For the interpolation we use an abscissa axis ofd&fiples and therefore the resulting
contours will contain that number of points. Simge are fixing the X axis, is it possible that some
contours have no images for all the samples thar@e&onsidering if the contour is shorter than the
interpolating vector. The defined behavior in thése is padding those unknown values with the
symbol ?'. We will take this into account in follmg stages Generate .arff file for Weka

processing

4.3.5 Temporal Derivative

By now we were only considering information abdw position of the points of the tongue
profile, nonetheless we are not sure about theemds of that relation between tongue position and
spectral features. That is why we will cover diffiet options and we will also consider the slope on
each point of the contour apart from their positidMith spatialDerivative script the first
derivative is calculated on every point of the @habscissa axis on a very simple way: we only need
the difference of height between samples to oliteenslope because they are all equally spaced so

for each point of the contour we subtract the presipoint's value from the next one's value.

Once again the usage of this function is up feruker and can be omitted by commenting
the line in the code. The script receivesrixbata and uploads its content with its spatial

derivative. This allows us to calculate even higbeter derivatives by executing more than one
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calls to the function in a row, for example if went to test the curvature of the contour (second
derivative) we will execute two calls to the fureti

4.3.6 Generate .arff file for Weka processing

On sectionGenerate images and vide® said that we do not expect to find any direct
relation between contours and audio visually. Tikathy we need a more complex tool to analyze
our dataWeka 3will be the software chosen for this task:

As explained in [20] "Weka is a collection of mawhilearning algorithms for data mining
tasks. (...) Weka contains tools for data pre-psice, classification, regression, clustering,

association rules, and visualization."

We will use the classifier tool (explained $ubjective resuljswhich allows us to predict
one attribute of an instance as a function ofrdse of its attributes. Since we are trying to teela
tongue's profile information and MGC coefficientse will create a structure on which each

instance contains all the points of one frame fo#id by its MGC coefficients.

CreateArff andextendArff Scripts are used to translate our data into tinattsire, making
it manageable by Weka. The format on which Wekalsedata is .arff Atribute-Relation File
Forma), which content is explained in [21].

@RELATION iris
BATTRIBUTE sepallength NUMERIC

EATTRIBUTE sepalwidth HUMERIC
BATTRIEUTE petallength NUMERIC

@DATA

5.1,3.5,1.4
4.9,3.0,1.4
4.7,3.2,1.3
4.6,3.1,1.5

Figure 4.6. Example of .arff file content. Image exacted from [21]

Weka work with information in table format, thugtharff file contains the definition of one
table on which first all attributes are defined ahen all the values corresponding to each instance
For example, in Figure 4.6 we see a simple tablevioich three numeric attributes are defined in
@ATRIBUTE section and then four instances are declaregbAma section, each one with its three

corresponding values.

One detail should be considered in this point: Wakaws us to use unknown values for
some instance writing them as '?' symbol in th# fide. That is why in sectiorinterpolate Y-axis
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valuesis said that we write that symbol in cases on Wwhiee contour had not image for a certain
value.

Following this formatcreateArff andextendArff Scripts receive the contours matrix and
the MGC coefficients matrixnétrixData andmac) as input and produce the corresponding .arff file
as outputcreateArff is used for a first execution of the program sina@zeates the file or rewrites
it in case it already existed. Once the file isated, the user can add more data from different
sentences executingxtendArff. On this kind of prediction analysis the more data have

available, the better the results will be and thathy we implemented this last option.

Both functions are complementary to each otherhgpetis no point on executing both
simultaneously. The user has to know whether hetsMancreate the file or extend its content and

then uncomment the corresponding line of codetfor i

The complete code of all these scripts previousplaned is available oAnnexsection, at
the end of this thesis.
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5 Results and critical assessment

After all the processing, we finally have articolatnd spectral data on the needed format
and we can analyze the relation between them usleka tool. For this Weka offers a powerful
visual function on which all instances of a certaittibute can be represented in a graph as functio
of other attribute. For example, we can plot aluea which a certain MGC coefficient takes in a
sentence in function of each one of the correspmndontour's points.

From the resulting clouds of points we could ob&ome conclusion like lineal relations or
patterns into the distributions of the points.

We will divide the results of the analysis by theicallator information used: We will
consider contour's points positions and first spaterivative of them, which is the slope of the
contour in each considered point.

5.1 Position of the tongue

As we said, our first analysis works over the posg of the tongue contour directly
obtained from the tracking tool.

One of the recorded sentences supplied at the tiagirof the thesis is processed by
EdgeTrakand by ourPythonprogram. The resulting .arff file is representedtibe visual tool of
Weka and here we show the graphs obtained:

Plot Matrix

coef25

coef24

coef23

coefz2

Figure 5.1. Plot of data representing contour poirg against MGC coefficients on Weka software
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As we can see on Figure 5.1, the results seem tboliels of points with no clear relation
between any pair of contour point-coefficient. Hoee by checking deeper, we find one case on
which some slight linear relation is displayed. fTisacoefficient number 11, whose results are

shown below.

Plot Matrix

coef10

Plot Matrix

coefld

Figure 5.2. Distribution of 11th MGC coefficient vdues
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Figure 5.3. Detail of the slight linear relation ofl1th MGC coefficient with contour points. Graphs epresent its

values in function of points number 1 (left) and nmber 40 (right) from a contour of 50 points

Figure 5.2 and Figure 5.3 illustrate how the 116G @/coefficient takes values related with
the position of the contour points. This linearat®n evolves from the beginning to the end of the
contour: with the first points of the contour (tfeot of the tongue) the relation is inverse, ite t
higher the root of the tongue, the lower the valtighe coefficient. Towards the tip of the tongue
the relation becomes direct, so the higher thetéilqmoints of the tip of the tongue, the higher the
value of the coefficient.

5.2 First derivative

We apply now the same analysis for the slope ofctiv@our by passing the .arff file to

Weka after call oncepatialDerivative ScCript.
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Figure 5.4. Plot of data representing contour slopagainst MGC coefficients on Weka software

The result of this execution is similar to the poes one: in general we obtain clouds of
points with no dependencies between variables @utdefficient number 11, which has linear

distribution of its values.

0. 0062

-0.22
-d. 68 l1.1& 11

Figure 5.5. Detail of the linear relation of MGC cefficient with slope values. Graph represents itsalues in

function of the slope in point number 24 from a cotour of 50 points

In this case the relation is more clear on cemoahts of the contour since the points of the
sides have their values plotted highly compressexltd very separated outliers. These outliers are
more common in both extremes of the contour bec#&useharder forEdgeTrakto follow the

movement on these points and more abrupt slopesaapp
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5.3 Subjective results

After this visual checking of the resulting relatjove will go further to performance one
last test. On it the idea is using that relatiotaoted between spectrum and contour points to

estimate the MGC coefficients via Weka classifiers.

Weka classify tool allows to estimate the valuawfattribute as function of the rest of them
in two steps: first, a model is created using spereentage of the available data (training set) and
once this model is optimized, it is applied to tkst of the data (testing set) [22]. In our case we
want an estimated version of all the MGC coeffitseend thus the model obtained after the training

stage will be applied to all the data (training &esting sets).

Weka offers different kinds of classifiers. The ahat we will use i9VI5P decision tree

classifier, which gave the best results on estimgatests (around 0.45 of correlation coefficient).

"A decision tree is a classifier expressed as arsgee partition of the instance space. The
decision tree consists of nodes that formoaded tree, meaning it is a directed tree wititode
called “root” that has no incoming edges. (...)Irdecision tree, each internal node splits the
instance space into two or more sub-spaces acgptdira certain discrete function of the input

attributes values." [23].

Tree View
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Figure 5.6. Example of decision tree obtained withVeka software

After classifying all MGC coefficients for everyaime of one of the sentences and saving all
them in .arff files generated by Weka, we exparal ¢bde included in sectiddata processing:

Python 3to synthesize a new audio signal with the newfooenhts:

MGCestimated = MGC

fori in range (len(MGCO])):
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MGCestimated [[, 1] =readMGC (filename , numFrames, i )

fori in range (Ilen(pitch )):
pitch [i] =pitch [ 40]
audioSynthesised = synthesise (filename , MGCestimated , pitch )

The code above shows how the MGC values are samecessively omGCestimated
variable. After that all values of pitch are setatdixed one. We do this to obtain the resulting

synthesized audio that contains only the infornmapimvided by the MGC coefficients.

The scriptreadvac takes the values of the MGC coefficient numbdor all the frames of
the sentence and, after substituting all the coiefits by the estimated ones, the sfiptthesize
reconstructs the audio signal using the valuesirdadafrom the classification. The code content of

both scripts in included in last sectidnnex

The result of the execution of the scépbthesize is a sample of how the audio signal can
be reproduced with the spectral information exgddtom the articulatory information. We want to
measure the quality and understandability of thesstences and for this we will perform the

following listening test.

We work with the five sentences mentioned in sacfigailable synchronized speech and
ultrasound dataand we create four audio files with four differamrsions of each sentence: one
with the original audio (a), one with the signateafcoded in MGC coefficients and pitch
information and decoded from that same informatiopy one with the signal decoded using our
estimated MGC coefficients instead of the origimaés (c) and the last one with the signal decoded
using the MGC coefficients of one frame repeatedliframes like a uniform spectrogram (d).

Five subjects (including the author and the tufahe thesis) were asked to fill a web-based

listening test (availabléttp://leszped.tmit.bme.hu/mapping20il@bout how natural and easy to

understand each one of the sentences was, maHengwith a number from 0 to 100. For it each
one of the sentences was presented to the subjeahdom order. They had the original audio as
reference along with the four commented versiong @fhich were also displayed in random order.
The subject could play each sentence as many @sé® wanted in order to rate them in a scale
from O to 100 (100 the best, O the worst) usingceols control. After that the data where

automatically stored and processed to obtain tkeeage value of all marks.

The results are placed in Table 5.1 below. For eamion of each sentence, the table

includes the average value of the rates given &tibjects of the test.
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SENTENCE a b c d
005 90 54 27 13
010 92 53 27 4
017 91 53 21 3
019 93 54 17 2
022 85 47 34 1

Table 5.1. Results of subjective experiment abouysthesized sentences' quality

In Table 5.1 we can see the same pattern for @alsémtences like a logical order of quality
among versions: always the most preferred wastilgenal audio followed by the decoded with the
original MGC coefficients one. The third best i m@rsion with the ultrasound-based estimated

MGC coefficients and in last place the one withtoarous spectra along the time.

There is some interesting conclusion to extraanftbese results. As we can see the value
of the estimated coefficients' sentence is alwaysmiddle point between the second and the fourth
versions with little variations depending on theteace (some sounds are easier to recognize than
others). What we can extract from this is that msulting spectra estimated from the articulatory
information via classifiers is not random valuesl @nfollows the structure of the original audio
enough to recognize some segments of the sentadoevan understand some parts when they are

simple.
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6 Summary and conclusion

The idea of this thesis was treating the articujato-acoustic mapping topic from a
practical view. It is an interesting research taguicl therefore a lot of studies have been donetabou

it. Those papers were our starting point and we tisem as basics to develop our own study.

We decided to focus that study on the relation betwthe movements of the human tongue
that produce the phonemes when we talk and theactesistics of the voice signal which is
generated from those movements. More concretelywasked with the spectral features of the

voice signal represented by the MGC coefficients. of

For reaching that relation different tools were duseich as the tongue tracking software
EdgeTrak different scripts made witRython 3to process the data that we wanted to analyze and
Weka tool for data mining work, which was used to egtréhe results from the processed

information.

After all the process we had to check the resutttained. We did it separated in two

different kind of tests: objective ones and suliyecbnes.

The objective test was about representing the sabtfie¢he positions of the tongue together
with the MGC values. We perceived a slight lineslation between one of the MGC coefficients
(the 11th value out of 26) and the positions ofghents of the tongue contour. This does not give

much information as a result and that is why wéuitle some subjective tests.

The idea of the subjective experiment was to géeeaa audio signal from an estimated
version of the coefficients obtained and test weetthe result was comprehensible or at least
similar to the original audio. That estimation tife coefficients was done from the articulator data
using a decision tree classifier. This kind of w@f$¢rs a more practical result closer to the ithed
we are chasing with this study (development of Isgsizer of voice or silent speech interface from
articulatory information). In this case the resdt®wed that there is a relation between articulato
movements and speech signal since the estimatéehses were quite similar to the original ones
although still far from being understandable.

This result gives a point to investigate possiltigriovements of the process and keep
searching alternatives which could give better ltesan synthesized speech. Those improvements
might be applied in every step, from using morecefht tracking tools to testing more complex
classifiers for estimation. There is much to imgdut also many options to explore.
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Annex

Here we include all the codes of the scriptsthatalleed about on sectidbata processing:
Python 3

readCoord

def readCoord(filename):
with open("ts/"+filename+".ts", "r") as tsFile:
for i in range(4):
tsFile.readline()
numFrames=int(tsFile.readline())
for i in range(4):
tsFile.readline()
numPoints=int(tsFile.readline())
matrixCoord = []
for i in range(numFrames):
Xx_axis=[]
y_axis=[]
for j in range(numPoints):
coordenates=tsFile.readline().split()
X_axis.append(int(coordenates[0])-100)
y_axis.append(-int(coordenates[1])+450)
j+=1
matrixCoord.append(x_axis)
matrixCoord.append(y_axis)
tsFile.readline()
tsFile.close()
return matrixCoord

getMGC

def getMGC(filename, numFrames):
(x, Fs) = wavread("Audio/"+filename+".wav"
duration = len(x)/Fs
frshft = len(x)//numFrames
frlen = 512
mgc_coeff = np.zeros(numFrames) # list of zeros
pitch = np.zeros(numFrames) # list of zeros
order = 25

alpha = 9.41
stage = 5
gamma = -1.0 / stage

pitch = pysptk.swipe(x.astype(np.float64), fs=Fs, hopsize=frshft, min=60, max=260,
otype="pitch")

frames = librosa.util.frame(x, frame_length=frlen,
hop_length=frshft).astype(np.float64).T

frames *= pysptk.blackman(frlen)

mgc_coeff = np.apply_along_axis(pysptk.mgcep, 1, frames, order, alpha, gamma)

return (mgc_coeff, pitch, duration)
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audiolmagesVideo

def audioImagesVideo(filename, numFrames, matrixCoord):
(x, Fs) = wavread("Audio/"+filename+".wav"
frameLen = len(x)//numFrames
segments = [type('', (), {})() for c in range(numFrames) ]
for i in range(numFrames):
segments[i] = x[i*frameLen : (i+1l)*framelLen]
FFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title='Togue contour '+filename, artist='Matplotlib')
writer = FFMpegWriter(fps=5, metadata=metadata)
fig = plt.figure()
with writer.saving(fig, "ImagesAudio/VideoA_"+filename+".mp4", numFrames):
for j in range(numFrames):
plt.cla()
plt.subplot(211)
plt.cla()
plt.plot(matrixCoord[2*j], matrixCoord[2*j+1])
plt.axis([@, 500, 0, 300])
plt.subplot(212)
plt.plot(segments[j])
plt.axis([0, 1200, -27000, 27000])
plt.savefig('ImagesAudio/' + str(j+1))
writer.grab_frame()

return

contourlmagesVideo

def contourImagesVideo(filename, matrixCoord, numFrames, duration):
fps = numFrames//duration
FFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title='Togue contour '+filename, artist='Matplotlib')
writer = FFMpegWriter(fps, metadata=metadata)
fig = plt.figure()
with writer.saving(fig, "ImagesContour/VideoC_"+filename+".mp4", numFrames):
for i in range(numFrames):
plt.plot(matrixCoord[2*i], matrixCoord[2*i+1])
plt.axis([@, 500, 0, 300])
plt.savefig('ImagesContour/' + str(i+l))
writer.grab_frame()
plt.cla()
return

spectrumimagesVideo

def spectrumImagesVideo(filename, numFrames, matrixCoord, MGC):
FFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title='Togue contour '+filename, artist="Matplotlib')
writer = FFMpegWriter(fps=5, metadata=metadata)
fig = plt.figure()
with writer.saving(fig, "ImagesSpectrum/VideoA_"+filename+".mp4", numFrames):
for j in range(numFrames):
plt.cla()
plt.subplot(211)
plt.cla()
plt.plot(matrixCoord[2*j], matrixCoord[2*j+1])
plt.axis([0, 500, 0, 300])
plt.subplot(212)
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plt.plot(MGC[j][1:])
plt.axis([0, 24, -0.5, 1])
plt.savefig('ImagesSpectrum/' + str(j+1))
writer.grab_frame()

return

interpolate

def interpolate (matrixCoord):
length = len(matrixCoord)//2
matrixData = []
maxim = 350
minim = 100
spaced = 5
for i in range (length):
f=interpld(matrixCoord[2*i], matrixCoord[2*i+1])
numZerosPrev = 0
numZerosPost = ©
if (max(matrixCoord[2*i]) < 350 and min(matrixCoord[2*i])>100):
init= min(matrixCoord[2*i])
final= max(matrixCoord[2*i])
x= np.arange(init, final, spaced)
interpolated = f(x)
numZerosPrev = (init - minim)//spaced
numZerosPost = ((maxim - final)//spaced)+1
zerosPrev = []
zerosPost = []
for j in range(numZerosPrev):
zerosPrev.append('?")
for j in range(numZerosPost):
zerosPost.append('?")
interpolated = zerosPrev + list(interpolated) + zerosPost
elif min(matrixCoord[2*i]) > 100:
init= min(matrixCoord[2*i])
while (init%5) != o:
init = init+1
x= np.arange(init, maxim, spaced)
interpolated = f(x)
numZerosPrev = (init - minim)//spaced
zerosPrev = []
for j in range(numZerosPrev):
zerosPrev.append('?")
interpolated = zerosPrev + list(interpolated)
elif max(matrixCoord[2*i]) < 350:
final= max(matrixCoord[2*i])
x= np.arange(minim, final, spaced)
interpolated = f(x)
numZerosPost = ((maxim - final)//spaced)+1
zerosPost = []
for j in range(numZerosPost):
zerosPost.append('?")
interpolated = list(interpolated) + zerosPost
else :
X = np.arange(minim, maxim, spaced)
interpolated = f(x)
matrixData.append(interpolated)
return matrixData
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spatialDerivative

def spatialDerivative (matrixData):
numFrames = len(matrixData)
numPoints = len(matrixData[@])
matrixDerivate = []
for i in range (numFrames):
vector = []
for j in np.arange(1,numPoints-1):
if (matrixData[i][j+1]=="?") or (matrixData[i][j-1]=='?"):
vector.append('?")
else:
vector.append(matrixData[i][j+1] - matrixData[i][j-1])
matrixDerivate.append(vector)
return matrixDerivate

createArff

def createArff(matrixData, MGC):
numFrames = len(matrixData)
numSamples = len(matrixData[@])
numCooefs = len(MGC[O])
with open("Weka/contours.arff", "w") as arffFile:
arffFile.write("@RELATION contour\n\n")
for i in range(numSamples):
arffFile.write("@ATTRIBUTE "+str(i)+" NUMERIC\n")
for i in range(numCooefs):
arffFile.write("@ATTRIBUTE coef"+str(i)+" NUMERIC\n")
arffFile.write("\n@DATA\n")
for i in range (numFrames):
frame = ""
for j in range (numSamples):
frame = (frame+str(matrixData[i][j])+",")
for j in range (numCooefs-1):
frame = (frame+str(MGC[i][j])+","
frame = (frame+str(MGC[i][25])+"\n")
arffFile.write(frame)
arffFile.close()
return

extendArff

def extendArff(matrixData, MGC):
numFrames = len(matrixData)
numSamples = len(matrixData[@])
numCooefs = len(MGC[O])
with open("Weka/contours.arff", "a") as arffFile:
for i in range (numFrames):
frame=""
for j in range (numSamples):
frame=(frame+str(matrixData[i][j])+",")
for j in range (numCooefs-1):
frame=(frame+str(MGC[i][j])+","
frame = (frame+str(MGC[i][25])+"\n")
arffFile.write(frame)
arffFile.close()
return
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Below we show the content of the scripts mentionezkctionSubjective result

readMGC

def readMGC (filename, numFrames, MGCnum):
with open("Weka/"+filename+"_"+str(MGCnum)+".arff", "r") as arffFile:
vector = []
for i in range (5):
arffFile.readline()
for i in range (numFrames):
vector.append(arffFile.readline())
arffFile.close()
return vector

synthesize

def synthesize (filename , MGQC pitch ):
(x, Fs) =wavread ("Audio/* +filename +".wav" )

frlen = round(0.025 * Fs)

frshft = len(x)//1 en(MGC

nframes = | en(pitch )

order = 25

alpha = 0.41

stage =5

gamma = -1.0 / stage

source_excitation = pysptk . excite (pitch , frshft )

mglsadf_coeff =np . apply_along_axis (pysptk . mgc2b, 1, MGC alpha , gamma);

synthesizer = Synthesizer = ( MGLSADForder =order , alpha =alpha , stage =stage ),
frshft )

audioSynthesised = synthesizer . synthesis  ( source_excitation , mglsadf_coeff )

return (audioSynthesised )
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